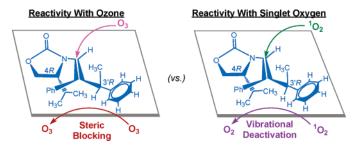
2005 Vol. 7, No. 11 2089–2092

Stereoselective Photooxidation of Enecarbamates: Reactivity of Ozone vs Singlet Oxygen


J. Sivaguru,[†] Hideaki Saito,^{†,‡} Thomas Poon,[§] Toma Omonuwa,[†] Roberto Franz,[†] Steffen Jockusch,[†] Catherine Hooper,[§] Yoshihisa Inoue,[‡] Waldemar Adam,^{*,||} and Nicholas J. Turro^{*,†}

Department of Chemistry and Department of Chemical Engineering, Columbia University, 3000 Broadway, Mail Code 3119, New York, New York 10027, Joint Science Department, W. M. Keck Science Center, 925 North Mills Avenue, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, California 91711, ICORP (JST) and Department of Molecular Chemistry, Osaka University, 2-1 Yamada-oka, Suita 565-0871, Japan, Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany, and Department of Chemistry, University of Puerto Rico, Rio Piedras, PR 00931

njt3@columbia.edu

Received February 2, 2005

ABSTRACT

Oxazolidinone-functionalized enecarbamates show contrasting behavior upon oxidation by singlet oxygen and by ozone. The observed stereoselectivity difference indicates that the oxidation with ozone is subject to classic steric effects, whereas the very high selectivity in the photooxidation with singlet oxygen is derived from vibrational deactivation.

Understanding the mechanisms of organic reactions has led to vast advances in the area of asymmetric processes.¹ Unfortunately, asymmetric photoreactions² have not enjoyed the same level of attention as asymmetric thermal reactions. Recently, we reported a very high stereoselectivity in the photooxidation^{3,4} of oxazolidinone-derived enecarbamates (Scheme 1) with singlet oxygen⁵ (¹O₂), both in solution³ and

- † Columbia University.
- ‡ Osaka University.
- § Claremont McKenna, Pitzer, and Scripps Colleges.
- Universität Würzburg and University of Puerto Rico.

(1) (a) Taylor, M. S.; Jacobsen, E. N. *Proc. Natl. Acad. Sci.* **2004**, *101*, 5368–5373. (b) Evans, D. A. In *Asymmetric Synthesis. Stereodifferentiating Reactions*; Morrison, J. D., Ed.; Academic Press: New York; 1984; Vol. 3, Part B, p 1. (c) Ojima, I. In *Advances in Asymmetric Synthesis*; Hassner, A., Ed.; Jai Press, Inc.: Greenwich, CT, 1995; p 95.

Scheme 1. Oxidation of (E)-/(Z)-Enecarbamates by ${}^{1}O_{2}/O_{3}$

$$\begin{array}{c} O \\ H \\ \hline \\ A(R/S) \\ \hline \\ A(R/S) \\ \hline \\ Ph \\ \hline \\ A(R/S) \\ \hline \\ Ph \\ \hline \\ A(R/S) \\ \hline \\ A(R/S) \\ \hline \\ Ph \\ \hline \\ A(R/S) \\ \hline \\ A(R/S) \\ \hline \\ Ph \\ \hline \\ A(R/S) \\ \hline \\ A(R/S) \\ \hline \\ Ph \\ \hline \\ A(R/S) \\ \hline \\ A(R/S) \\ \hline \\ Ph \\ \hline \\ A(R/S) \\ \hline \\ A(R/S$$

in organized media. To elucidate the factors responsible for the high stereocontrol in this photooxidation, we have investigated the reactivity of ozone⁶ (O_3) with oxazolidinone-functionalized enecarbamates. The selectivity during photooxidation by 1O_2 was shown to depend on the alkene geometry;^{3,4} the (E)-isomer gives higher selectivity than the corresponding (Z)-isomer in isotropic media.³ By investigating the reactivity of O_3 with oxazolidinone-derived enecarbamates, we expected to gain insight into the high stereoselectivity observed with 1O_2 , in view of the facts that (i) O_3 and 1O_2 are electrophilically similar in nature, ${}^{5-7}$ (ii) the products upon oxidation with 1O_2 and O_3 are the same (Scheme 1), and (iii) the importance of *radiationless deactivation* (*physical quenching*) may be assessed during the oxidation process because O_3 is a reactive ground-state species compared to 1O_2 , an excited-state molecule.

$$ln(k_R/k_S) = ln[(100 + \% \text{ ee})/(100 - \% \text{ ee})]$$
 (1)

$$\ln(k_{\rm R}/k_{\rm S}) = \Delta \Delta S^{\dagger}_{\rm R-S}/R - \Delta \Delta H^{\dagger}_{\rm R-S}/RT \tag{2}$$

$$s = \frac{k_R}{k_S} = \frac{\ln[1 - C(1 + ee_{MDB})]}{\ln[1 - C(1 - ee_{MDB})]}$$
(3)

where C in eq 3 is the conversion and ee_{MDB} is the ee value of the MDB product.

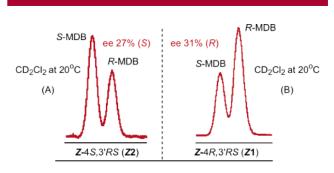

The epimeric pairs of oxazolidinone-derived (E)- and (Z)enecarbamates were oxidized with O3 in three different solvents (CD₂Cl₂, CDCl₃, and CD₃OD) at various temperatures (Table 1). The conversion was kept low to avoid side reactions,⁶ and the enantiomeric excess (ee) was obtained by GC analysis of the methyldesoxybenzoin (MDB) product on a chiral stationary phase (Scheme 1). Inspection of Table 1 reveals the following features: (i) The same enantiomer of the MDB is enhanced upon varying the solvent, but a noticeable change in the ee values is observed at the same temperature for both (E)- and (Z)-enecarbamates; for example, at -70 °C, the ee values for O₃ oxidation of E1 in CD₃OD is 4%; in CD₂Cl₂, 18%; and in CDCl₃, 29%. (ii) The sense of the enhanced MDB enantiomer depends on the configuration at the C-4 position of the oxazolidinone ring as well as the alkene geometry; for example, E1 gave the (S)-MDB in excess, whereas the corresponding (Z)-isomer

Table 1. Oxidation of the (E)- and (Z)-Enecarbamates^a by O_3^b

	Т	% ee	% con-			
solvent	(°C)	MDB^c	${\rm version}^d$	\mathbf{s}^e	$\Delta \Delta H^{\ddagger f}$	$\Delta \Delta S^{\ddagger f}$
$\mathrm{CD_2Cl_2}$	20	22(S)	6	1.6	0.16	1.49
	-15	24(S)	15	1.7		
	-45	16(S)	18	1.4		
	-70	18(S)	27	1.5		
$CDCl_3$	20	18(S)	12	1.5	-0.48	-0.97
	-15	20(S)	17	1.6		
	-70	29(S)	25	2.0		
$\mathrm{CD_3OD}$	20	4(S)	4	1.1	0.12	0.16
	-15	2(S)	6	1.1		
	-45	0	4	1.0		
	-70	4(S)	5	1.1		
$\mathrm{CD_2Cl_2}$	20	31(R)	10	2.0	-0.14	0.79
	-15	30 (R)	12	1.9		
	-78	36(R)	9	2.2		
$\mathrm{CD_2Cl_2}$	20	33(S)	6	2.0	0.6	2.98
	20	27(S)	9	1.8		
	-15	38(S)	7	2.3		
	-15	12(S)	20	1.3		
	-45	6(S)	27	1.2		
	-70	36(S)	9	2.2		
	-70	4(S)	36	1.1		
$CDCl_3$	20	20(S)	16	1.6	0.08	1.03
	-15	16(S)	17	1.4		
	-70	18(S)	14	1.5		
$\mathrm{CD_3OD}$	20	20(S)	3	1.5	-0.05	0.62
	-15	21(S)	4	1.5		
	-45	22(S)	16	1.6		
	-70	$22\left(S\right)$	7	1.6		
	CD ₂ Cl ₂ CDCl ₃ CD ₃ OD CD ₂ Cl ₂ CD ₂ Cl ₂	solvent (°C) CD2Cl2 20 -15 -45 -70 -15 -70 -70 CD3OD 20 -15 -45 -70 -15 -70 -15 -78 20 -15 -15 -45 -70 CD2Cl2 20 -15 -45 -70 -70 CDCl3 20 -15 -70 CD3ODD 20 -15 -70 CD3ODD 20 -15 -70 CD3ODD 20 -15 -70 CD3ODD 20 -15 -15 -20 -15 -20 -15 -20 -15 -20 -15 -20 -15 -20 -15 -20 -15 -20 -15	solvent (°C) MDB° CD_2Cl_2 20 22 (S) -45 16 (S) -70 18 (S) $CDCl_3$ 20 18 (S) -15 20 (S) -70 29 (S) CD_3OD 20 4 (S) -25 0 -70 4 (S) CD_2Cl_2 20 31 (R) -70 4 (S) -70 4 (S) CD_2Cl_2 20 33 (S) CD_2Cl_2 20 33 (S) CD_2Cl_2 20 33 (S) -78 36 (R) -75 12 (S) -45 6 (S) -70 36 (S) -70 4 (S) -70 4 (S) CDCl_3 20 20 (S) -70 18 (S) -70 18 (S) CD3OD 20 20 (S) -15 12 (S) -70 18 (S) -70 18 (S) -70 18 (S) -70 18 (S)<	solvent (°C) MDBc versiond CD_2Cl_2 20 22 (S) 6 -15 24 (S) 15 -45 16 (S) 18 -70 18 (S) 27 $CDCl_3$ 20 18 (S) 12 -15 20 (S) 17 -70 29 (S) 25 CD_3OD 20 4 (S) 4 -15 2 (S) 6 -45 0 4 -70 4 (S) 5 CD_2Cl_2 20 31 (R) 10 -15 30 (R) 12 -78 36 (R) 9 CD_2Cl_2 20 33 (S) 6 20 27 (S) 9 -15 38 (S) 7 -15 12 (S) 20 -45 6 (S) 27 -70 4 (S) 36 $CDCl_3$ 20 20 (S) <t< td=""><td>solvent (°C) MDBc versiond se CD_2Cl_2 20 22 (S) 6 1.6 -15 24 (S) 15 1.7 -45 16 (S) 18 1.4 -70 18 (S) 27 1.5 CDCl₃ 20 18 (S) 12 1.5 -15 20 (S) 17 1.6 -70 29 (S) 25 2.0 CD₃OD 20 4 (S) 4 1.1 -15 2 (S) 6 1.1 -45 0 4 1.0 -70 4 (S) 5 1.1 CD₂Cl₂ 20 31 (R) 10 2.0 -15 30 (R) 12 1.9 -78 36 (R) 9 2.2 CD₂Cl₂ 20 33 (S) 6 2.0 20 27 (S) 9 1.8 -15 12 (S) 20 1.3</td><td>solvent (°C) MDBc versiond se $\Delta\Delta H^{\ddagger}f$ CD₂Cl₂ 20 22 (S) 6 1.6 0.16 -15 24 (S) 15 1.7 1.6 -45 16 (S) 18 1.4 1.4 -70 18 (S) 27 1.5 -0.48 CDCl₃ 20 18 (S) 12 1.5 -0.48 -15 20 (S) 17 1.6 1.0</td></t<>	solvent (°C) MDBc versiond se CD_2Cl_2 20 22 (S) 6 1.6 -15 24 (S) 15 1.7 -45 16 (S) 18 1.4 -70 18 (S) 27 1.5 CDCl ₃ 20 18 (S) 12 1.5 -15 20 (S) 17 1.6 -70 29 (S) 25 2.0 CD ₃ OD 20 4 (S) 4 1.1 -15 2 (S) 6 1.1 -45 0 4 1.0 -70 4 (S) 5 1.1 CD ₂ Cl ₂ 20 31 (R) 10 2.0 -15 30 (R) 12 1.9 -78 36 (R) 9 2.2 CD ₂ Cl ₂ 20 33 (S) 6 2.0 20 27 (S) 9 1.8 -15 12 (S) 20 1.3	solvent (°C) MDBc versiond se $\Delta\Delta H^{\ddagger}f$ CD ₂ Cl ₂ 20 22 (S) 6 1.6 0.16 -15 24 (S) 15 1.7 1.6 -45 16 (S) 18 1.4 1.4 -70 18 (S) 27 1.5 -0.48 CDCl ₃ 20 18 (S) 12 1.5 -0.48 -15 20 (S) 17 1.6 1.0

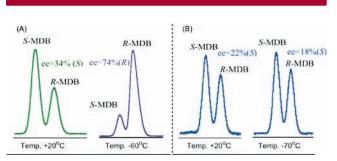
^a A ca. 50/50 mixture of diastereomers (total concentration of 2.3×10^{-3} M) was used. ^b Procedure given in Supporting Information. ^c Average of three runs; error $\pm 6\%$. ^d Conversion monitored by ¹H NMR spectroscopy (see Supporting Information); the conversion was kept low to prevent side reactions (ref 6). ^c From eq 3. ^f From eqs 1 and 2. $\Delta\Delta H^{\ddagger}$ given in (kcal mol⁻¹); $\Delta\Delta S^{\ddagger}$ given in (cal mol⁻¹ K⁻¹).

(*Z*1) gave (*R*)-MDB in excess. (iii) The observed ee value depends on the extent of conversion, i.e., ee values were moderate at low conversions and small at high conversions. (iv) The same MDB enantiomer is enhanced upon varying the temperature. (v) The change of the configuration at the *C*-4 position of the oxazolidinone reverses the sense of the MDB enantiomer to the same extent (Figure 1).

Figure 1. GC traces of product MDB. Opposite senses of ee were observed in the ozonolysis of Z1 (B) and Z2 (A) due to the opposite configuration at the C-4 position of the oxazolidinone.

2090 Org. Lett., Vol. 7, No. 11, 2005

^{(2) (}a) Inoue, Y.; Ramamurthy, V. Chiral Photochemistry; Marcel Dekker: New York, 2004. (b) Lewis, T. J.; Randall, L. H.; Rettig, S. J.; Scheffer, J. R.; Trotter, J.; Wu, C.-H. J. Am. Chem. Soc. 1996, 118, 6167. (c) Leibovitch, M.; Olovsson, G.; Sundarababu, G.; Ramamurthy, V.; Scheffer, J. R.; Trotter, J. J. Am. Chem. Soc. 1996, 118, 1219. (d) Chong, K. C. W.; Sivaguru, J.; Shichi, T.; Yoshimi, Y.; Ramamurthy, V.; Scheffer, J. R. J. Am. Chem. Soc. 2002, 124, 2858–2859.


⁽³⁾ Poon, T.; Sivaguru, J.; Franz, R.; Jockusch, S.; Martinez, C.; Washington, I.; Adam, W.; Inoue, Y.; Turro, N. J. *J. Am. Chem. Soc.* **2004**, *126*, 10498–10499.

⁽⁴⁾ Sivaguru, J.; Poon, T.; Franz, R.; Jockusch, S.; Adam, W.; Turro, N. J. J. Am. Chem. Soc. **2004**, *126*, 10816–10817.

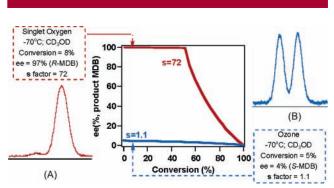
^{(5) (}a) Wasserman, H. H.; Murray, R. W., Eds.; Singlet Oxygen; Academic: New York; 1979. (b) Frimer, A. A., Ed. Singlet Oxygen; CRC: Boca Raton; 1985; Vols. I-4. (c) Gollnick, K.; Kuhn, H. J. Singlet Oxygen; Wasserman, H. H.; Murray, R. W.; Eds.; Academic: New York, 1979. (d) Foote, C. S. Acc. Chem. Res. 1968, 1, 104. (e) Gollnik, K. Adv. Chem. 1968, 77, 78.

⁽⁶⁾ Bailey, P. S. Ozonation in Organic Chemistry; New York, 1978; Vols. and 2.

^{(7) (}a) Wadt, W. R.; Goddard, W. A., III. *J. Am. Chem. Soc.* **1975**, *97*, 3004–3021. (b) Goddard, W. A., III; Dunning, T. J., Jr.; Hunt, W. J.; Hay, P. J. *Acc. Chem. Res.* **1973**, *6*, 368–376.

Figure 2. Representative GC traces of product MDB for the oxidation of *E***1** by $^{1}O_{2}$ (A) and O_{3} (B) in CD₂Cl₂.

It is evident from Table 1 that there is no solvent or temperature dependence of the ee values for (E)-enecarbamates upon oxidation with O₃, which is in sharp contrast to the photooxidation³ with ¹O₂ (Table 2; Figure 2). Clearly, the extent of stereoselectivity in the oxidation of E1 with O_3 (Table 1) differs from that of ${}^{1}O_{2}$ (Table 2). Further, the (Z)enecarbamates do not show any solvent or temperature dependence upon oxidation with O3, a result similar to the ¹O₂ oxidation.³ To understand the difference in the behavior of the oxazolidinone-functionalized enecarbamates toward the oxidation of O_3 and 1O_2 , we computed the differential activation enthalpy $(\Delta \Delta H^{\ddagger})$ and entropy $(\Delta \Delta S^{\ddagger})$ values, which are directly related to the ee values through egs 1 and 2.8 These data are listed in Tables 1 and 2, which reveal that there is no significant difference in the activation parameters for the oxidation of the (E)- and (Z)-enecarbamates with O₃. The sharp contrast in the differential activation parameters for the oxidation of E1 by O_3 and 1O_2 is revealing (Tables 1 and 2); for example, in the oxidation of E1 in CD₂-Cl₂, the $\Delta\Delta S^{\ddagger}$ and $\Delta\Delta H^{\ddagger}$ values for O₃ are 1.49 cal mol⁻¹ K^{-1} and 0.16 kcal mol⁻¹, respectively, compared to -15 cal $\text{mol}^{-1} \text{ K}^{-1}$ and $-4.0 \text{ kcal mol}^{-1}$ for ${}^{1}\text{O}_{2}$. Thus, the ee value of the MDB product is a critical balance of the enthalpy (molecular) and entropy (environmental) terms, which are inter-


Table 2. Photooxidation of the (*E*)-Enecarbamate by ${}^{1}O_{2}{}^{3}$

sub- strate ^a	solvent	T (°C)	$\%$ ee MDB b	$\%$ conversion b,c	\mathbf{s}^d	$\Delta \Delta H^{\ddaggere}$	$\Delta\Delta S^{{\pm}^{e}}$
E1	$\mathrm{CD_2Cl_2}$	20	34(S)	25	2.3	-4.0	-15
		-20	27(R)	65	2.7		
		-60	74(R)	31	9.2		
E1	$CDCl_3$	50	8(S)	5	1.2	-4.5	-14
		18	63 (R)	17	5.0		
		-15	78(R)	37	13		
		-40	88(R)	43	31		
E 1	$\mathrm{CD_3OD}$	50	70 (R)	30	7.6	-2.8	-4.9
		18	85(R)	34	19		
		-15	90(R)	17	23		
		-40	94(R)	12	37		
		-70	97(R)	8	72		

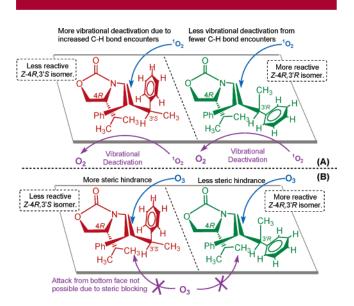
 $[^]a$ A ca. 50/50 mixture of diastereomers (total concentration 3.0 \times 10^{-3} M) in an NMR tube under O_2 pressure was used, with methylene blue (3.7 \times 10^{-4} M) as a sensitizer. b Determined by GC analysis. c Determined by ^1H NMR spectroscopy. d From eq 3. e From eqs 1 and 2. $\Delta\Delta H^{\ddagger}$ given in (kcal mol $^{-1}$); $\Delta\Delta S^{\ddagger}$ given in (cal mol $^{-1}$ K $^{-1}$).

related by eqs 1 and 2.8 Consequently, the large contribution from the differential activation parameters for the $^{1}O_{2}$ oxidation (Table 2) suggests that the transition state is conformationally flexible and its solvation—desolvation behavior is crucial. Expectedly, the temperature and solvent variations influence the stereodifferentiating step.8 Enthalpic control applies when the stereoselectivity is enhanced upon decreasing the temperature, a phenomenon common to many thermal asymmetric reactions. In contrast, the low contribution from the differential activation parameters for the O_{3} oxidation indicates that the transition state is more rigid and is not influenced by the variation of the external factors (solvent/temperature) of the system. Expectedly, there is no noticeable change in the extent of the ee values, and the sense of the enhanced enantiomer remains the same upon oxidation by O_{3} .

As mentioned above, the ee value depends on the extent of conversion. The ratio of the rates of formation (relative rates) of the enantiomeric products may be computed from the observed ee value at a given conversion by means of eq 3, where k_R/k_S is **s**, the stereoselectivity factor. ¹⁰ Inspection of Table 1 shows that the **s** factor at best is about 2 for oxidation of enecarbamates by O₃. The low **s** factor will lead to a wide variation in the ee values at different converisons, ¹⁰ as observed for the O₃ oxidation, for which the ee values are moderate at low and small at high conversions. For example, 36% ee was observed at 9% conversion and only 4% ee at 36% conversion for the oxidation of Z2 by O₃ in CD₂Cl₂ at -70 °C. The consequence of the difference in the **s** factors in the oxidation by O₃ and ¹O₂ is best illustrated in Figure 3. ¹⁰ Under identical conditions, the ee value is 97%

Figure 3. GC traces of product MDB for the oxidation of E1 by O_3 and 1O_2 at -70 °C in CD_3OD and the plot of % ee versus % conversion (simulated from eq 3; ref 10d) to illustrate the consequence of the difference in the s factors.

for the ${}^{1}O_{2}$ oxidation (**s** factor of 72) compared to only 4% for the O_{3} oxidation (**s** factor of about 1.1).

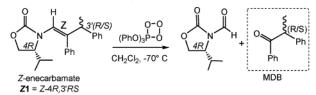

It is evident from Table 1 that both (E)- and (Z)-enecarbamates give only moderate ee values in the O_3 oxidation. In general, the (Z)-isomers display comparable or higher

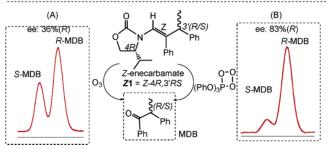
(9) Leffler, J. E. J. Org. Chem. 1955, 20, 1202.

Org. Lett., Vol. 7, No. 11, 2005

^{(8) (}a) Inoue, Y. *Chem. Rev.* **1992**, *92*, 741–70. (b) Buschmann, H.; Scharf, H.-D.; Hoffmann, N.; Esser, P. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 477–515. (c) Otera, J.; Sakamoto, K.; Tsukamoto, T.; Orita, A. *Tetrahedron Lett.* **1998**, *39*, 3201.

stereoselectivity than the corresponding E isomers, which is in contrast to the observed trend of ${}^{1}O_{2}$, for which the E isomer exhibits a very high stereoselectivity (ee >97%) compared to the (Z)-isomer. 3 We speculate that the steric hindrance experienced by O_{3} is reflected in the observed selectivity. As shown in Figure 4B, 11 the approach of O_{3}




Figure 4. Control of the oxidant approach through deactivation and steric effects for ${}^{1}O_{2}$ (A) and O_{3} (B).

onto the double bond from the bottom is hindered by the isopropyl group, such that O_3 is forced to come in from the top. Moreover, enrichment of the MDB enantiomer depends on the configuration at the C-3′ position (Figure 4). For example, in the case of Z1, the (4R,3'R)-(Z)-isomer is more reactive than the (4R,3'S)-(Z)-diastereomer, which affords (R)-MDB in excess (Figure 4).

If steric effects play a dominant role in the O₃ oxidation, then the observed ee values should be higher when a bulky oxidant is employed. This exception was tested with triphenyl phosphite ozonide (Scheme 2), which is reported to undergo direct addition to alkenes through a perepoxide-like transition state at -70 °C. ¹³ As shown in Scheme 2, an ee value of 83% ((*R*)-MDB) was observed with *Z*1 upon triphenyl phosphite ozonide [P(OPh)₃O₃] oxidation, ¹³ compared to an ee value of only 36% ((*R*)-MDB) with O₃. Besides steric

Scheme 2. Oxidation of *Z*1 by with Triphenyl Phosphite Ozonide and GC Traces Comparison of (Chiral Stationary Phase) O₃ (A) and by P(OPh)₃O₃ (B) Oxidation of *Z*1.

effects, dipole-induced interactions of the oxidizing species with the enecarbamates may significantly differ to result in a different stereoselectivity.

The high stereoselectivity observed for ${}^{1}O_{2}$ (~97% ee at −70 °C; CD₃OD; Table 2), relates presumably to its electronically excited nature, since it may be vibrationally deactivated on encountering C-H bonds. 3,5,12 Thus, the productive chemical pathway is in competition with the unproductive physical quenching process through deactivation by C-H bonds. The oxidation efficiency of ¹O₂ is, therefore, determined by which of the two processes dominates. In previous quenching studies on oxazolidinonederived enecarbamates, we demonstrated that the major pathway is unproductive physical quenching rather than the useful chemical mode.¹² The isopropyl group at the C-4 position of the oxazolidinone chiral auxiliary is apparently responsible for the vibrational deactivation of ¹O₂, since it abundantly furnishes C-H bonds. Evidently, a process that leads to a high stereoselectivity in the product formation must be void of such vibrational deactivation. We are currently examining the deuteration of the substrates at the C-4 and C-3' stereogenic centers to better understand the high stereoselectivity displayed by ¹O₂.

Acknowledgment. The authors at Columbia thank the NSF (CHE 01-10655 and CHE-04-15516) for generous support of this research. W.A. gratefully acknowledges the financial support from the Deutsche Forschungsgemainschaft, Alexander von Humboldt-Stiftung, and the Fonds der Chemischen Industrie. T.P. acknowledges the support of the W. M. Keck Foundation. T.O. thanks the NSF-REU program for a summer research fellowship. H.S. gratefully acknowledges a JSPS research fellowship (08384) for young scientists.

Supporting Information Available: Reaction procedure, analysis conditions, and calculation of differential activation parameters. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0502230

2092 Org. Lett., Vol. 7, No. 11, 2005

^{(10) (}a) Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. **2001**, 343, 5–26. (b) Kagan, H. B.; Fiaud, J. C. Top. Stereochem. **1988**, 18, 249–330. (c) Martin, V. S.; Woodward, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. J. Am. Chem. Soc. **1981**, 103, 6237. (d) Ching, S. C.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. **1982**, 104 (25), 7294–7299.

⁽¹¹⁾ Structure of the (Z)-isomer was obtained by crystallography; see: Adam, W.; Bosio, S. G.; Turro, N. J.; Wolff, B. T. J. Org. Chem. 2004, 69, 1704.

⁽¹²⁾ Poon, T.; Turro, N. J.; Chapman, J.; Lakshminarasimhan, P.; Lei, X.; Jockusch, S.; Franz, R.; Washington, I.; Adam, W.; Bosio, S. G. *Org. Lett.* **2003**, *5*, 4951–4953.

^{(13) (}a) Mori, A.; Abe, M.; Nojima, M. *J. Org. Chem.* **2001**, *66*, 3548. (b) Stephenson, L. M.; Zielinski, M. B. *J. Am. Chem. Soc.* **1982**, *104*, 5819. (c) Above -30 °C, the ozonide liberates 1O_2 , while at lower temperatures, the ozonide itself is an oxidant (ref 13a).